Блог
724 0

Трансформатор (катушка) тесла принцип работы, схема, применение

Трансформатор (катушка) Тесла (Tesla Coil, TC) — это повышающий высокочастотныйрезонансный трансформатор— два колебательных контура, настроенных на одинаковую резонансную частоту. В сети можно найти множество примеров ярких реализаций этого необычного устройства.

Катушка без ферромагнитного сердечника, состоящая из множества витков тонкого провода, увенчанная тором, испускает настоящие молнии, впечатляя изумленных зрителей.

С точки зрения электротехники в нашем примитивном понимании, трансформатор Теслы — это первичная и вторичная обмотка, простейшая схема, которая обеспечивает питание первичной обмотки на резонансной частоте вторичной обмотки, но выходное напряжение возрастает в сотни раз. В это сложно поверить, но каждый может убедиться в этом сам.

Как работает трансформатор тесла

КатушкаТесла

названа так в честь ее изобретателя НиколыТесла(около 1891 года). История данного изобретения начинается с конца 19 века, когда гениальный ученый-экспериментатор Никола Тесла, работая в США, только поставил перед собой задачу научиться передавать электрическую энергию на большие расстояния без проводов. Аппарат для получения токов высокой частоты и высокого потенциала был запатентован Теслой в 1896 году.

Не смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты.

Трансформатор Тесла – прекрасная игрушка для тех, кто хочет сделать что-то эдакое. Это устройство не перестает поражать окружающих мощью своих огромных разрядов. Более того, сам процесс конструирования трансформатора очень увлекателен – не часто так много физических эффектов сочетаются в одной несложной конструкции.

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают как работает трансформатор Тесла.

катушка тесла

Принцип действия трансформатора Тесла похож на работу обычного трансформатора. Трансформатор Тела состоит из двух обмоток – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную.

трансформатор тесла схема

Вторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.

колебания напряжения в трансформаторе Тесла

Тесла обладает тремя основными характеристиками:

  1. резонансной частотой вторичного контура,
  2. коэффициентом связи первичной и вторичной обмоток,
  3. добротностью вторичного контура.

Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию.

Виды катушек Тесла

  • Собственно, катушка самого Теслы (в составе использовался разрядник);
  • Трансформатор на радиолампе;
  • Катушка на транзисторах;
  • Катушки резонанса (две штуки).

Все катушки имеют схожий принцип работы, различаются только сложность их сборки и используемая электроника.

Рассматривая фото самодельных катушек Тесла, поневоле захочешь точно такую же себе домой. Ведь их работа настолько красивое зрелище, что невозможно оторвать глаз.

Однако многие опасаются браться за изготовление такого прибора, оправдывая это тем, что на работу уйдет много времени и сил, да и еще все это опасно для жизни.

Но заверяем вас, схема обычной катушки Тесла довольно проста. А потому приглашаем вам самостоятельно собрать это необычное устройство.

Описание прибора

В большинстве случаев КТ (катушку Николя Тесла) описывают сложно. На самом деле она является обычным резонансным трансформатором. При эксплуатации вырабатывается электрический ток высокой частоты. Сейчас инженеры, которые трудятся на оборонный комплекс, создали устройство, обладающее мощностью в 1 Тгц. И теперь многим интересно, как и зачем появилась катушка Тесла, если ученый трудился над созданием беспроводной передачей сигнала, к которому мы все привыкли в современной жизни.

Предполагалось, что если разместить два устройства на удалении друг от друга, электричество от первой катушки можно передать на другую. Единственное условие – обе должны иметь идентичные технические параметры. Более того, амбициозность Тесла позволяла ему надеяться, что таким образом можно создать вечный двигатель. И если бы у него все получилось, люди смогли бы отказаться от использования АЭС, ТЭС и ГЭС, а проблема экологии разрешилась сама собой. Тем не менее, продолжения разработка не получила. Причина тому до сих пор неизвестна.

Пошаговая сборка катушки Тесла самостоятельно

Итак, высший пилотаж нам демонстрировать не нужно, поэтому будем делать самую простую катушку, использующую в своей сборке транзистор. Она наиболее щадящая по затратам времени и денег, а потому идеально нам подходит.

Генерация

После того как будет достигнуто напряжение пробоя между электродами, в разряднике формируется электрический лавинообразный пробой газа. Происходит разряжение конденсатора на катушку. После этого резко снижается напряжение пробоя в связи с оставшимися ионами в газе (носителями заряда). Вследствие этого состоящая из конденсатора и первичной катушки цепь контура колебания через разрядник остается замкнутой. В ней образуются высокочастотные колебания. Они постепенно затухают, преимущественно вследствие потерь в разряднике, а также ухода на вторичную катушку электромагнитной энергии. Тем не менее колебания продолжаются, пока током создается достаточное количество зарядных носителей для поддержания в разряднике существенно меньшего напряжения пробоя, чем амплитуда колебаний LC-контура. Во вторичной цепи появляется резонанс. Это приводит к возникновению высокого напряжения на терминале.

Строение катушки Тесла

  • Первичная катушка (первичный контур);
  • Вторичная катушка (вторичный контур);
  • Источник питания;
  • Заземление;
  • Кольцо защиты.

Это основные элементы трансформаторов. Нужно отметить, что в различных видах катушек могут встречаться и другие составляющие.

Область применения

Неверно считать, что трансформатор Теслы не имеет широкого практического применения. Он используется для поджига газоразрядных ламп и для поиска течей в вакуумных системах. Тем не менее, основное его применение в наши дни — познавательно-эстетическое. В таблице ниже представлены эффекты, возникающие во время работы трансформатора тесла.

Эффекты, возникающие во время работы трансформатора тесла.

В основном это связано со значительными трудностями при необходимости управляемого отбора высоковольтной мощности или тем более передача её на расстояние от трансформатора, так как при этом устройство неизбежно выходит из резонанса, а также значительно снижается добротность вторичного контура.

Будет интересно➡ Лучшие способы проверки датчика Холла

Принцип работы устройства

Источник питания подает на первичный контур нужное напряжение. После чего контур производит высокочастотные колебания, которые, в свою очередь, вынуждают вторичный контур создать свои колебания, идущие с первыми в резонансе. Благодаря этому, во второй катушке возникает ток с большим напряжением и частотой, который и образует столь ожидаемый эффект – стример. Теперь нужно собрать все элементы в одну кучу.

Меры безопасности и полезное виде

КТ в состоянии вывести из строя даже выключенные бытовые приборы, находящиеся в разиусе активного электромагнитного поля. Нужно не просто выключить их, а унести подальше. Имеет смысл перед первым пускам обесточить помещение, если испытания проводятся на столе, где есть розетка. Личная безопасность – главное требование. Когда приходит время проверять наличие стримеров, держитесь подальше. Сила тока в активной вторичной обмотке может достигать 700 Ампер, тогда как для человека смертельно уже 15А.

Необходимые материалы

  • В роли источника возьмем автомобильный аккумулятор (или любой другой источник постоянного напряжения 12-19 В);
  • Медный провод (желательно в эмали) диаметром от 0,1 до 0,3 мм. и длинной около 200 метров;
  • Еще один медный провод диаметром 1 мм;
  • Два каркаса (диэлектрика). Один (для вторичного контура) диаметром от 4 до 7 см. и длинной 15-30 см. Другой (для первичного контура) должен быть на несколько сантиметров больше в диаметре и короче в длине;
  • Транзистор D13007 (можно использовать другие, идентичные ему);
  • Плата;
  • Немного резисторов на 5 – 75 кОм, мощностью 0,25 Вт.

Это уж не игрушка из лампочки и строчника, и даже не откачанная колбочка с воздухом. Моя старая мечта сделать настоящий, классический, чуть менее, чем полностью самодельный плазменный шар наконец-то исполнилась. Придуманы технологии, найдены материалы, и, наконец, сделан рабочий образец из химической круглодонной колбы. Плазменные шары как таковые впервые были придуманы и сделаны в США в середине восьмидесятых неким Биллом Паркером, назывались «Light Sculptures» и достаточно активно производились его фирмой в разнообразных, чрезвычайно красочных исполнениях, причём составы большинства газовых смесей пределов головы самого Билла Паркера так и не покинули. То, что сейчас имеется на рынке — китайская стандартизованная отрыжка, не идущая ни в какое сравнение с его шедевральными работами. Более впечатляющие (относительно китайских) девайсы делаются командой Страттмана и химиком Майком Дэвисом, но у первых заоблачные цены, а второй принципиально их не продаёт. И, хотя ресурсов для создания стеклянных сфер у меня нет, я попытался хотя бы приблизиться возможными в домашней лабе средствами к творениям Билла. Если в двух словах, то суть моего самодельного плазменного шара очень проста: берём большую химическую стеклянную колбу, впаиваем в её горло центральный электрод и штенгель (узкая трубка, через которую производится откачка из рабочего объёма и которая заплавляется при отпайке вакуумного прибора от насоса), откачиваем воздух, напускаем нужную газовую смесь, отпаиваем и подключаем источник высокого напряжения высокой частоты. На деле же имеется масса трудностей и нюансов, которые попытаюсь рассказать, поскольку нигде и сети не видел достойной инструкции такого рода.

1. Работа со стеклом.

Стекло — очень необычный для того, кто не пробовал работать с его жидкой фазой материал. По стеклодувному делу есть довольно много неплохих книг, и для желающих попробовать свои силы можно неплохо изучить по ним матчасть. В применении к плазменному шару нам требуются два предмета: стеклянная трубка и шаровая химическая колба (важно: необходимо точное совпадение марок стекла!если колба пирекс, то трубка — тоже, если колба «жёлтая» (молибденовое стекло, скажем, С52), то трубка тоже. В противном случае растрескивание при остужении и провал всей работы почти неизбежны), а в качестве инструментов — графитовые палочки примерно 5-6 мм в диаметре, длинноносые пассатижи, хорошая пропановая горелка (необходим полновесный пропановый баллон хотя бы на 5 литров: все одноразовые мелкие баллоны не подойдут из-за требований к расходу газа и охлаждения баллона вследствие этого), способная прогреть достаточно большую рабочую область и водородная горелка, без которой я бы скорее всего не справился вообще (не знаю как работают без неё ортодоксальные стеклодувы, обходящиеся смесью природного газа и кислорода).

Работа со стеклом, включая изготовление электровакуумных приборов, довольно подробно описана в некоторых книгах, например в «Технике лабораторного эксперимента». Рекомендую её к изучению всем интересующимся.

Для начала следует сделать центральный электрод. Берём трубку (у меня имеется стандартная 15 мм диаметром) и на максимальном режиме работы горелки сворачиваем оплавлением на её конце каплю и выдуваем,(ртом головы) в небольшой шарик, раза в 2-3 больше диаметра трубки. За подробностями процесса могу только предложить обратиться к книгам по стеклодувке и к собственной практике. Затем в шарик проталкивается комочек стальной ваты или мочалки, и засыпается серебряной пудрой, которая налипает на стекло и обеспечивает равномерное распределение коронного разряда.

Следующая операция — сужение горла колбе. нам необходимо сузить его до такой степени, чтобы оно обхватило трубку центрального электрода и при этом там было место для штенгеля. Лучший способ, который мне удалось придумать: колба зажимается в штативе перпендикулярно пламени горелки, включенной на полную мощность, и проворачивается по мере сужения, а края, размягчённые пламенем, заворачиваются фантиком внутрь при помощи пассатижей. Когда диаметр отверстия приблизится к диаметру сделанного ранее шарика, начинается самое интересное: требуется обпаять стекло колбы вокруг стекла электрода, не погнув его, не заплавив и не испортив. Я делал так: брал второй штатив, в который крепил графитовый стержень, засунутый в электрод (графит не смачивается стеклом и может быть невозбранно извлечён), и необходимый для обеспечения непрогибания электрода при его нагреве и спайке, и насколько мог точно выверял центровку шарика посередине большой колбы, после чего просто грел вместе и электрод и горловину колбы, замазывая пробелы и дырки при помощи водородной горелки, сильно разжижающей стекло, и пассатижей. Незадолго до окончания процесса запайки необходимо впаять штенгель — другой кусок трубки того же стекла, через который будет происходить откачка воздуха и напуск газа, и который и будет отпаян при окончательной герметизации шара. Делается это либо на весу при помощи водородной горелки, либо с закреплением его в штативе — последний вариант позволяет меньше дёргаться в процессе — штенгель не пытается оплыть и согнуться — но более заморочен.

После окончания работы по впайке убеждаемся в отсутствии дырок, особенно микроскопических. С этим я намучился больше всего: они могут быть совершенно незаметны в разжиженном стекле, но проявить себя при откачке и придётся заново всё прогревать и заделывать их. Затем отжигаем спай, чтобы снять напряжения в стекле (за теоретическими основами опять отсылаю к книгам, а я делал так: включаю пропановую горелку на режим коптящего пламени, и держу в нём спай около 3-5 минут, после чего плотно укутываю каолиновой ватой и даю остыть естественным образом. Вата нужна для теплоизоляции и обеспечения отсутствия обдува воздухом, который будет охлаждать стекло слишком быстро). В результате должно получиться что-то наподобие этого: корявый, весь в саже и страшновато выглядящий, но вакуумопрочный и герметичный стеклянный спай двух трубок и колбы, причём одна из трубок (боковая) идёт в объём колбы, а вторая — в изолированный от неё стеклом шарик центрального электрода.

2. Работа с вакуумом (более подробно можно прочесть в отдельной статье по ссылке).

Перед напуском газов из получившегося пока ещё не плазменного шарика надо удалить воздух. К сожалению, про водоструйные насосы и компрессоры от холодильника сразу можно забыть: их не хватит для обеспечения чистоты газа, каковая критична. Но не всё так сложно, для шара с ксеноновым или криптоновым наполнением полностью хватит качественного форвакуумника типа2НВР-5Д(возможно, хватит даже китайского, типа Z-1,5, но, скорее всего, придётся промывать колбу газом, тратя его впустую, чтобы добиться нужной чистоты): он откачивает почти до 5*10^-2 торр, в то время как рабочее давление ксенона/криптона в шаре — десятки торр. Но, вообще говоря, необходимо подключатьтурбомолекулярный или диффузионный насос, и откачивать шар до глубокого вакуума (исчезновения разряда). Вакуумная техника — ещё более хитрая область, чем стеклодувное дело, и навряд ли я смогу рассказать про неё лучше, чем это сделано в специализированных изданиях, поэтому воздержусь от подробных описаний схемы: имеющие представление о матчасти, типах компонентов и особенностях технологии смогут сделать всё сами, не имеющим же описание пользы не принесёт никакой, и только породит массу новых вопросов, поэтому поступлю так же, как делают химики при описании реакций, и просто использую в описании массу ключевых слов.

В моём вакуумном посте использованы 2НВР-5ДМ в качестве форвакуумного насоса и стеклянный грибковый насос (от стеклянного быстро перешёл на качественный Edwards EO50 с воздушным охлаждением) на полифениловом эфире в качестве диффузионного. Соединение выполнено вакуумными шлангами (толстая резина), между насосами стоят металлические краны-шиберы, нержавейка+фторопласт (к Edwards шланг идёт напрямую). В дифнасос впаян коваровый ввод (прикреплён через быстросъёмные соединения манифолд с качественным краном большого сечения), к которому припаян (прикреплён через того же стандарта быстросъёмы) нержавеющий сильфон (любая резина будет загаживаться откачиваемыми веществами и гадить потом во всю систему, не позволяя достичь хоть сколько-то глубокого вакуума), оканчивающийся ещё одним краном (восхитительным в своём удобстве соединением типа UltraTorr. Всячески рекомендую). Метрология как таковая отсутствует (калибровалось по ВИТ-2 с ПМТ-4М и ПМИ-2), все измерения проводятся на основании положения кольца ПФЭ в сопле дифнасоса (степени и характера свечения разряда в трубке от качера, который позволяет с точностью до порядка измерить глубину вакуума вплоть до 10^-5 торр) и характера разряда от ВЧ генератора в откачиваемом объёме. Основные принципы работы с вакуумом — а) это медленно, б) газит почти всё (исключения — качественная нержавейка, например), в) напустить воздух намного легче чем откачать его, г), самое важное: насос не «засасывает» молекулы газов, как это может представляться, он всего лишь не пропускает их в обратную сторону. Поэтому надо обеспечить все условия для их попадания внутрь насоса: трубки как можно шире, подогрев газа, чистое масло в дифнасосе и форваке, и т.д. и т.п. Для контроля уровня разрежения рекомендую использовать источник высокочастотного поля, если нет хороших калиброванных вакууметров и обвески к ним. Лучше всего — качер.3. Работа с электроникой.

Основная задача — обеспечить высокое напряжение высокой частоты и не очень большой мощности. С этим идеально справляется обычный однотактный генератор на 555 со строчником на выходе полевика, вот только одна проблема: для достижения большого напряжения у этой схемы необходим резонансный режим строчника, и резонанс должен достигаться на частотах в сотни килогерц, чтобы обеспечивать красивые разряды в шаре. Эту проблему пока решить так и не удалось, и приходится обходиться относительно низкими частотами — около 30-40 кГц. На худой конец можно сделать просто блокинг-генератор или мультивибратор, но я тешу себя надеждой, что сумевший дойти уже до запитывания шара читатель может сделать ген на 555 таймере самостоятельно

Добавить комментарий